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ABSTRACT

This study uses Global PrecipitationMeasurement (GPM)Microwave Imager (GMI) and Ka-precipitation

radar observations to quantify the snowfall detection performance for different channel (frequency) com-

binations. Results showed that the low-frequency-channel set contains limited snow detection information

with a 0.34 probability of detection (POD). Much better performance is evident using the high-frequency

channels (i.e., POD5 0.74). In addition, if only one high-frequency channel is allowed to be added to the low-

frequency-channel set, adding the 1836 3GHz channel presents the largest POD improvement (from 0.34 to

0.50). However, this does not imply that the water vapor is the key information for snowfall detection. Only

using the high-frequency water vapor channels showed poor snowfall detection with POD at 0.13. Further

analysis of all 8191 possible GMI channel combinations showed that the 166-GHz channels are indispensable

for any channel combination with POD greater than 0.70. This suggests that the scattering signature, not the

water vapor effect, is essential for snowfall detection. Data analysis and model simulation support this ex-

planation. Finally, the GPM constellation radiometers are grouped into six categories based on the channel

availability and their snowfall detection capability is estimated, using channels available on GMI. It is found

that type-4 radiometer (all channels) has the best snowfall detection performance with a POD of 0.77. The

POD values are only slightly smaller for the type-3 radiometer (high-frequency channels) and type-5 radi-

ometer (all channels except 183 channels).

1. Introduction

As the follow-on to the Tropical Rainfall Measuring

Mission (TRMM), an objective of the Global Pre-

cipitation Measurement (GPM) mission is to detect

falling snow (Hou et al. 2014; Skofronick-Jackson et al.

2015), which accounts for a significant fraction of pre-

cipitation occurrence in the middle and high latitudes

(Mugnai et al. 2007; Liu 2008b; Kulie andBennartz 2009;

Behrangi et al. 2014). This study focuses on quantifying

the snowfall detection performance of the GPM Mi-

crowave Imager (GMI).

Rainfall detection using passive microwave sensor

over land has been researched extensively (Spencer

et al. 1989; Grody 1991; Adler et al. 1994; Kummerow

and Giglio 1994; Ferraro et al. 1994; Petty 1995; Kidd

et al. 1998; Seto et al. 2005; Wang et al. 2009; Kacimi

et al. 2013; Turk et al. 2014; You et al. 2015, 2016),

whereas snowfall detection over land via passive mi-

crowave sensors is still at an early developmental stage.

The brightness temperature (TB) depression at the high

frequency (85GHz) caused by the ice scattering gener-

ally is considered the primary signature for both rainfall

and snowfall detection over land. Snowfall detection is

more challenging than rainfall detection for several

reasons. First, the snow accumulation on the ground

in the cold season often presents a similar passive

microwave signature as the falling snow (Grody 1991;

Stephens and Kummerow 2007; Noh et al. 2009). The

emissivity of the snow accumulation on the ground

varies greatly depending on the snow wetness and snow

grain microstructure (Mätzler 1994; Foster et al. 2012),
making the surface emissivity difficult to model. Second,

the nonspherical shape of ice particles and snowflakesCorresponding author e-mail: Yalei You, yyou@umd.edu
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results in much more complex radiative properties than

the approximately spherically shaped rain drops (Liu

2008a; Petty and Huang 2010). Third, the supercooled

liquid water can increase the TB at high frequencies and

obscure the TB depression signature caused by the

scattering effect (Kulie et al. 2010; Löhnert et al. 2011;
Xie et al. 2012; Liu and Seo 2013; Wang et al. 2013).

Fourth, snowfall has a weaker scattering signature rel-

ative to rainfall (Skofronick-Jackson and Johnson 2011;

Munchak and Skofronick-Jackson 2013; You et al.

2015). Therefore, the less-pronounced TB depression

due to the weaker scattering is more easily obscured by

other signals (e.g., surface contamination and super-

cooled liquid water).

Despite these challenges, several sensitivity studies

have shown promising results for snowfall detection

over land using high-frequency microwave channels.

Theoretical radiative transfer modeling studies have

shown that frequencies around 150GHz are probably

most appropriate for snowfall detection in the middle

and high latitudes (Bennartz and Bauer 2003). They also

noted that channels near 85 and 183 6 7GHz showed

potential for snow detection. Di Michele and Bauer

(2006) also found that the high frequencies (95–100,

140–150, and 187GHz) are most suitable for snowfall

retrieval over land. Case studies using radiative transfer

models and the Weather Research and Forecasting

(WRF) Model showed that the 166-GHz TB provides

the best detection capability for falling snow over land,

and that low frequencies (,89GHz) contain very weak

falling snow signals (Skofronick-Jackson et al. 2013).

Foster et al. (2012) analyzed a snowfall case over the

mid-Atlantic region of the United States using satellite-

and ground-based radar measurements. They found a

clear TB depression tendency in the high-frequency

channels from the Advanced Microwave Sounding

Unit-B (AMSU-B) and Microwave Humidity Sounder

(MHS). Similar results (i.e., high-frequency channels

containing snowfall detection information) have also

been found over ocean (Liu and Curry 1997; Katsumata

et al. 2000).

Several snowfall detection algorithms have been de-

veloped over land. Previous studies were able to de-

lineate the possible snowfall regions using the TBs at the

opaque oxygen band channel (54GHz) and water vapor

band channel (183GHz) from AMSU-B (Staelin and

Chen 2000; Chen and Staelin 2003; Surussavadee and

Staelin 2009). It is shown that the snowfall regions de-

tected by the TBs are roughly consistent with the

ground-based radar for a snowfall event over the New

England region of the United States. The authors also

demonstrated that the TBs are able to capture the major

features of the snowfall events over theArctic region, by

comparing with the CloudSat observations. Kongoli

et al. (2003) presented a threshold technique for snow

detection that uses coincident ground station snow ob-

servations and TBs from AMSU-B. The threshold

technique identifies the possible snowfall regions by

assigning several threshold values for TBs at different

channels (e.g., 183 6 3GHz). The primary channels

include 150, 183 6 1, 183 6 3, and 183 6 7GHz. The

53.6-GHz TB is used to filter out the possible cold snow

observations (i.e., snowfall with surface air tempera-

tures colder than 268C). Case studies showed that the

snowfall identification agrees well with ground-based

radar observations. This framework recently has been

extended to the Advanced Technology Microwave

Sounder (ATMS) for both warm and cold weather

conditions (Kongoli et al. 2015). It is found that better

snowfall detection performance occurs during the rela-

tively warmer weather conditions with average surface

temperature of about23.18Cdue to the larger scattering

effect. Liu and Seo (2013) created a lookup table for

snowfall detection using three leading principal com-

ponents of TBs at high frequencies (from 89 to 183 6
7GHz) fromAMSUandMHS data. They noted that the

retrieved snow probability agrees well with CloudSat

radar observations. In contrast to the aforementioned

studies, which almost exclusively use the TBs at high-

frequency channels, Turk et al. (2014) proposed a linear

discriminant analysis technique that condenses all fre-

quency channels (both low and high) into one single

pseudochannel. This method has been successfully ap-

plied to Special Sensor Microwave Imager/Sounder

(SSMIS) and ATMS for snowfall detection by You et al.

(2015) and (2016).

The statistical snowfall detection methods are com-

plemented by physical snowfall detection models.

Skofronick-Jackson et al. (2004) presented a physical

model for snowfall detection that leverages both radia-

tive transfer and mesoscale cloud models. The snow

microphysical parameters are derived from the meso-

scale model (i.e., temperature, relative humidity pro-

files, and the vertical distribution of hydrometeors). This

physical model was able to capture the major features

of a blizzard in the United States. Kim et al. (2008)

improved this model by calculating the scattering

properties more precisely and using more realistic snow

particle size distributions. Noh et al. (2009) developed a

Bayesian framework for snowfall detection and retrieval

using the high-frequency microwave observations

(.85GHz). They used ground and spaceborne radar

observations along with WRF Model outputs to simu-

late TB. This algorithm is applied to the AMSU-B ob-

servations over the Great Lakes region. It is shown that

the detection and retrieval results agree well with the
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surface radar observations when there is little snow ac-

cumulation on the ground. However, larger false de-

tection and overestimated snowfall rates occur during

the late winter because of the frequent snow cover on

the ground.

Previous sensitivity experiments and algorithm de-

velopment have clearly demonstrated that high-

frequency TB (.85GHz) can be used to detect falling

snow. However, several questions remain:

1) How much information do the low-frequency chan-

nels contain for snowfall detection over land?

2) How important are the high-frequency channels for

snow detection?

3) What is the optimal channel combination for snow-

fall detection?

Observations from the GPM are explored to quantify

the channel importance and address these important

questions. Another objective of this study also seeks to

quantify the snowfall detection capability of the 13GPM

constellation radiometers (see Table 1; more details are

provided in section 6).

This paper is organized as follows. A brief overview of

the datasets used in this work is provided in section 2.

The statistical method for snowfall detection is pre-

sented in section 3. Section 4 quantifies the low- and

high-frequency channels’ detection capability for snowfall

detection. Section 5 demonstrates the snowfall detection

skills by all possible channel combinations from these

13GMI channels. The snowfall detection performance for

GPM constellation radiometers estimated by GMI is

shown in section 6. Section 7 summarizes the results and

discusses implications of this work.

2. Data

The primary data used in this study are the snowfall

observations from Ka-band precipitation radar (KaPR;

35.5GHz; Seto et al. 2013) and TBs from GMI (Draper

et al. 2015). This study uses data from March 2014

through December 2015 over land regions between 658S
and 658N.

The swath width of KaPR is 120km and the footprint

size is 5 km at nadir. Vertically, the KaPR is able to

detect precipitation from 0 to 20km at a 250-m resolu-

tion. There are four versions of the KaPR-retrieved

precipitation rate, depending on different measure-

ments and ancillary data used in the retrieval process.

These include the Ka level-2A product (2AKa), Ka

level-2A product with atmospheric state environmental

information (2AKaENV), Dual-Frequency Precipitation

Radar (DPR) level-2A product (2ADPR), and DPR

level-2A product with atmospheric state environmen-

tal information (2ADPRENV). In this study, we use

the snowfall data from the 2ADPR high-sensitivity

(HS) scans (Hamada and Takayabu 2016). In this

product, both KaPR and Ku-band precipitation radar

(KuPR) measurements are used to estimate the pre-

cipitation rate, which theoretically is more accurate

than the estimate from either single-frequency radar.

TABLE 1. GPM constellation radiometers grouped into six types based on channel availability for the different radiometer types. The

sensors that employed the cross-track scanning scheme are indicated with an asterisk. Other sensors use the conical scanning scheme. For

the cross-track scanning sensors, the polarization (V/H) is valid only at nadir. All values in Table 1 are rounded to one digit. However,

throughout the text, the number is rounded into an integer for simplicity.

6–7GHz 10GHz 19GHz 23GHz 31–37GHz 50–60GHz 80–92GHz 150–167GHz 183–190GHz

1: Low-frequency channels

WindSat 6.8 V/H 10.7V/H 18.7 V/H 23.8 V/H 37.0 V/H

TMI 10.7V/H 19.4 V/H 21.3 V 37.0 V/H 85.5V/H

AMSR-E 6.9 V/H 10.7V/H 18.7 V/H 23.8 V/H 36.5 V/H 89.0V/H

2: Low-frequency channels 1 89GHz

AMSR2 6.9/7.3 V/H 10.7V/H 18.7 V/H 23.8 V/H 36.5 V/H 89.0V/H

AMSU-A* 23.8 V 31.4 V 50.3–57.3 V/H 89.0V

SSMI 19.4 V/H 22.2 V 37.0 V/H 85.5V/H

3: High-frequency channels

AMSU-B* 89.0V 150.0V 183.3V

MHS* 89.0V 157.0V 183.3 H /190.3V

SSMIS 19.4 V/H 22.2 V 37.0 V/H 50.3–63.3 V/H 91.7V/H 150.0V 183.3 H

4: All channels

GMI 10.7V/H 18.7 V/H 23.8 V 36.5 V/H 89.0V/H 166.0V/H 183.3V/H

ATMS* 23.8 V 31.4 V 50.3–57.3 V/H 88.2V 165.5 H 183.3 H

5: All except 183-GHz channels

MADRAS 18.7 V/H 23.8 V 36.5 V/H 89.0V/H 157V/H

6: 183-GHz channels

SAPHIR* 183.3 H
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To avoid the sidelobe contamination, only observa-

tions from the central 16 scan lines (bin 5–20 for KaPR)

are used.

The GMI sensor is a conical-scan passive microwave

radiometer, which has 13 frequencies ranging from 10.65

to 183.3GHz, including 10.7 (V/H), 18.7 (V/H), 23.8 (V),

37.0 (V/H), 89.0 (V/H), 166.0 (V/H), 183.3 6 3 (V), and

183.3 6 7 (V) GHz (for vertical V and horizontal H

polarizations). These frequencies (or part of them) are

widely available on other GPM constellation passive

microwave radiometer sensors. Hereafter, these chan-

nels will be referred to as V10, H10, . . . , V183 6 7 for

convenience. Also, we will refer to the frequency as 10, 19,

24, 37, 89, 166, 183 6 3, and 183 6 7GHz for simplicity.

The hourly column-integrated total water vapor (TWV)

at approximately 0.58 resolution is from the Modern-Era

Retrospective Analysis for Research and Applications

(MERRA) dataset (Rienecker et al. 2011). Surface

snowfall observations from the National Climatic Data

Center (NCDC) Integrated Surface Database (ISD) are

used as the surface reference (Smith et al. 2011).

The spatial resolutions among GMI channels vary

from 19km3 32 km at 10GHz to 4 km3 5km at 1836
7GHz (Draper et al. 2015). Data collocation was per-

formed to analyze coincident data from all of these

channels. First, the resolution at V37 (8.6 km3 14.4 km)

is taken as the nominal resolution. The four closest

pixels at higher frequencies from 89 to 1836 7GHz are

chosen, and then the TBs from these four pixels are

averaged by different weights to represent the corre-

sponding TBs at the nominal resolution. The weights are

calculated by the function exp(2r2/2s2), where r is the

distance and s is a constant that is determined by letting

the weight reduce to one-half when r increases from zero

to one-half of the effective field of view (FOV) of the

37GHz. The effective FOV of the 37GHz is 12 km

(Draper et al. 2015). The present study uses the lower-

frequency channels (i.e., 10, 19, and 24GHz) at their

native spatial resolution. This collocation procedure is

similar to Fu and Liu (2001). For each collocated GMI

pixel, the pixel is deemed as a snow pixel if the snowfall

rate from any of the closest four KaPR pixels is greater

than 0mmh21. Otherwise, the pixel is taken as a no-

snow pixel.

For TWV, we use the data from the closest grid to

match the 37-GHz pixel resolution. In addition, the

TWV observations are linearly interpolated to match

the time of the TB observation. Specifically, we first find

the nearest grid box to the collocated GMI pixel by

calculating the distance between each grid box and the

pixel central latitude–longitude. Then the 24 TWV

values in the corresponding grid are linearly interpo-

lated to match the time of the GMI pixel.

The authors again emphasize that in the present study

the low-frequency channels always indicate that the

channel central frequency is less than 85GHz (e.g., 10,

19, 24, and 37GHz), while the high-frequency channels

represent those with central frequency greater than or

equal to 85GHz. (e.g., 85, 166, and 183GHz). This

definition for high- and low-frequency channels is widely

accepted in the precipitation retrieval and validation

community (e.g., Ferraro et al. 1994; Wang et al. 2009;

Kummerow et al. 2011; Skofronick-Jackson and

Johnson 2011; You et al. 2011; You and Liu 2012; You

et al. 2014).

3. Methodology

This study detects snowfall using a linear discriminant

analysis (LDA) approach. The LDA approach con-

denses multiple variables into a single variable while

retaining as much discriminatory information as possi-

ble. In terms of snowfall detection, we construct two

databases (snow and no-snow) based on KaPR obser-

vations that contain multivariables x (TBs). According

to Wilks (2011), the linear discriminant function to dis-

tinguish these two groups is

d
1
5 aT 3 x , (1)

where T stands for the transpose and a is the discrimi-

nant vector, calculated in the following way:

a5 S21
pool(x1 2 x

2
) and

S
pool

5
n
1
2 1

n
1
1 n

2
2 2

S
1
1

n
2
2 1

n
1
1 n

2
2 2

S
2
, (2)

where xi and Si (i5 1, 2) represent the mean vector and

covariance of each group, respectively, and Spool is the

weighted average of the two sample covariance matrices

from these two datasets. The boldface variables repre-

sent vectors. Variables n1 and n2 are the samples size in

these two groups, respectively.

A decision to classify an observation x as a snow or no-

snow pixel can be made according to the value of the

scalar d1. Previous work (Turk et al. 2014; You et al.

2015, 2016) showed that the LDAmethod performs well

for rainfall and snowfall detection. Similar to the widely

use scattering index (Grody 1991), the d1 is named as

discrimination index (DI).

The probability of detection (POD) [Eq. (3)] was se-

lected to evaluate snowfall detection performance using

different channel combinations. Larger POD values

indicate better snowfall detection. To conduct a mean-

ingful and fair comparison between different PODs

from different channel combinations, the false alarm
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rate (FAR) must be fixed since POD and FAR are in-

herently related. In the current work, the FAR is fixed at

0.10. Choosing other FAR threshold values (e.g., 0.05

and 0.15) will change the numerical values of POD but

the conclusions hold. POD and FAR are defined by the

following equations:

POD5
a

a1 c
and

FAR5
b

b1 d
, (3)

where the definitions for a, b, c, and d are given in

Table 2.

4. Sensitivity experiments of different channel
combinations

a. Snow detection performance of low-frequency
channels

In this section, the snow detection performance from

low-frequency channels is quantified using actual GPM

observations.

Figure 1 provides a demonstration of theLDAdetection

approach by showing the histograms for snow andno-snow

scenarios derived from the all-low-frequency-channel

combination (V10, H10, V19, H19, V24, V37, and H37)

and the all-high-frequency-channel combination (V89,

H89, V166, H166, V183 6 3, and V183 6 7). The snow

and no-snow histograms largely overlap each other for

the low-frequency-channel set (Fig. 1a). This demon-

strates very limited separation information from the low-

frequency channels. In contrast, the snow and no-snow

curves show much better separation using the all-high-

frequency-channel set (Fig. 1b). Quantitatively, the

POD from the all-low-frequency-channel set is only 0.34,

while the POD is 0.74 from the all-high-frequency-

channel set (Fig. 2; corresponding to the FAR at 0.10;

green dashed line).

As mentioned previously, we choose the POD value

corresponding to FAR at 0.1 to judge the snowfall de-

tection performance for different channel or channel

combinations. Selecting other FAR values does not

change the conclusions. For example, the POD values

for low-frequency channels and all high-frequency

channels are 0.34 and 0.74, corresponding to FAR at

0.10 (vertical green dashed line). Corresponding to FAR

at 0.05 (vertical black dashed line), they are approxi-

mately 0.2 and 0.6 (see Fig. 2), respectively.

We next calculate the PODs from all possible com-

binations of the low-frequency channels [(V10 and

H10), (V10, V19, and H37), etc.]. There are 127 possible

low-frequency-channel combinations out of these

seven low-frequency channels (C1
7 1C2

7 1 . . . 1C7
75 127).

Variable Ck
7 stands for the number of combinations by se-

lecting k channels from seven low-frequency channels,

where k is from 1 to 7.

Figure 3 shows the histogram of these POD values.

For example, there are 26 of these low-frequency-

channel combinations with POD values around 0.25.

TABLE 2. Notation for snow/no-snow results judged by KaPR

and GMI.

Snow judged

by KaPR

No snow judged

by KaPR

Snow judged by GMI a b

No snow judged by GMI c d

FIG. 1. (a) Histograms of the DI derived from the all-low-frequency-channel combination (V10, H10, V19, H19,

V24, V37, and H37) for snow and no-snow scenes. Both histograms have been scaled by the corresponding max

value in each histogram. (b) As in (a), but for the all-high-frequency-channel combination (V89, H89, V166, H166,

V183 6 3, and V183 6 7).
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The small POD values clearly show poor snow detection

capability for low-frequency channels, regardless of the

low-frequency channel or channel combinations. The

best POD from these low-frequency-channel combina-

tions is 0.34.

Figure 4 further demonstrates the snowfall detection

capability of the low-frequency channels by three

snowfall events on 6 January 2015 over the U.S. Great

Lakes region, on 28 January 2015 over eastern China,

and on 17 January 2015 over Siberia, Russia. The all-

low-frequency-channel combination (V10, H10, V19,

H19, V24, V37, and H37) is used in the case studies

because it is one of the combinations associated with the

largest POD (0.34; Fig. 3).

The low-frequency-channel set almost completely

missed the snowfall occurrence for the Great Lakes

snow event, as indicated by ground station observa-

tions (magenta cross in Figs. 4a–c), KuPR (green dots

in Fig. 4b), and KaPR (red dots in Fig. 4c). Conversely,

the low-frequency channels falsely indicate snowfall

occurrence in the southern portion of the swath,

where KuPR, KaPR, and ground stations observe no

snowfall. The low-frequency-channel set does capture

most of the snowfall occurrence for the snowfall event

over eastern China. However, false detections north

of 458N and in areas around Beijing are also evident,

since the ground station reports no snowfall. The

dense ground-station observation network around

Beijing makes it highly unlikely that they all missed

snowfall if snowfall indeed occurred. Similar to the

snowfall event over eastern China, false snowfall de-

tections are apparent south of 508N for the snowfall

case in Siberia, Russia, where ground stations, KuPR,

and KaPR detect no snowfall.

The snowfall occurrence frequency is calculated for

each 18 grid box in the GPM coverage area (658S–658N)

from December 2014 to February 2015 (Fig. 5). The

frequency is the snowfall occurrence count divided by

the count of all observations in each grid box, as in-

dicated either by KaPR (Fig. 5a) or the low-frequency-

channel set (Fig. 5b). Overall, the snowfall frequency

pattern derived from low-frequency-channel set is op-

posite to that from KaPR. That is, the occurrence fre-

quency from the low-frequency-channel set is smaller in

the high-latitude regions (north of 458N) and larger in

the low-latitude regions relative to the KaPR observa-

tions. The low-frequency-channel set misses many

snowfall events in Alaska, northeastern Canada, west-

ern Russia, and the Kamchatka Peninsula. Low fre-

quencies also underestimate the snowfall occurrence

frequency over Japan. Conversely, in relatively low

latitudes (e.g., southwestern United States and areas

from the Black Sea to the Caspian Sea), the snowfall

frequency is much larger than that from KaPR. Note

that the snowfall frequency pattern derived from KaPR

is roughly consistent with that derived from the 94-GHz

CloudSat cloud profiling radar (Liu 2008b; Behrangi

et al. 2014; Kulie et al. 2016).

In summary, this section demonstrates the limited

snowfall detection capability from the low-frequency

channels. Regardless of the low-frequency channel or

channel combination, the largest POD is 0.34. These

findings support many previous theoretical studies

(Bennartz and Bauer 2003; Di Michele and Bauer 2006;

Skofronick-Jackson et al. 2004). Relative to the high-

frequency channels, the less sensitivity to the ice-scattering

FIG. 2. POD vs FAR at different DI thresholds for the all-low-

frequency-channel combination (V10, H10, V19, H19, V24, V37,

and H37) and the all-high-frequency-channel combination (V89,

H89, V166, H166, V1836 3, and V1836 7). The green dashed line

stands for the FAR at 0.10.

FIG. 3. Histogram of the PODs derived from 127 possible

all-low-frequency-channel combinations.
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signal of the low-frequency channel and the larger surface

contamination are largely responsible for the poor snowfall

detection performance of the low-frequency channels. The

larger FOV of the low-frequency channels may also con-

tribute to the poor snowfall detection performance.

b. Importance of the high-frequency channels

1) POD IMPROVEMENT BY ADDING

HIGH-FREQUENCY CHANNELS

The previous section demonstrates the limited snowfall

detection information provided by the low-frequency

channels. This section will illustrate the importance of

high-frequency channels for snowfall detection. To this

end, the POD calculated from the low-frequency-

channel set (V10, H10, V19, H19, V24, V37, and

H37) provides the benchmark. The high-frequency

channels (V89, H89, V166, H166, V183 6 3, and

V1836 7) are then added one by one to determine how

much POD improvement can be achieved by adding

one high-frequency channel to this low-frequency-

channel set.

Figure 6 showed the PODs from the low-frequency-

channel set and low-frequency-channel set plus one

single high-frequency channel. The POD based only on

the low-frequency channel set is 0.34. The POD is al-

most identical after adding the V89 or H89 channel,

which is probably because this channel is still highly

influenced by the surface conditions in the snowfall

scenarios due to the weak snowfall-scattering signature.

The POD increases to 0.43 and 0.46 by adding the V166

and H166 channels to the low-frequency-channel set,

respectively. The POD increases to 0.46 when adding

the V1836 7 channel. The greatest improvement results

FIG. 4. (a) Snow detection performance of the all-low-frequency-channel combination (V10, H10, V19, H19, V24, V37, andH37; type-1

radiometer; see Table 1) for a snow event over the Great Lakes region on 6 Jan 2015. Blue, green, and red curves represent the GMI,

KuPR, and KaPR swath boundaries, respectively. Blue dots represent the snow occurrence derived from the low-frequency channels.

(b) Snowfall occurrence observed by KuPR (green dots). (c) Snowfall occurrence observed by KaPR (red dots). (d)–(f) As in (a)–(c), but

for the snow event over eastern China on 28 Jan 2015. (g)–(i) As in (a)–(c), but for the snow event over Siberia, Russia, on 17 Jan 2015. The

magenta plus signs represent the snowfall occurrence reported by the ground observations.
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from adding the V183 6 3 water vapor channel to the

low-frequency-channel set (POD increases to 0.50). This

result is somewhat surprising since previous model

simulations (e.g., Bennartz and Bauer 2003; Skofronick-

Jackson et al. 2013; Shi et al. 2010) have shown that the

high-frequency window channel (e.g., 166GHz) is the

more sensitive channel for snowfall detection over land

(due to the large scattering signal) than the water vapor

channels (e.g., V183 6 3). However, our observation-

based analysis shows that adding the V183 6 3 water

vapor channel to the low-frequency-channel set pro-

vides greater snowfall detection improvement than

adding the V166 channel. To better understand this

finding, the PODs from several channel combinations

are calculated (next section), conditioned on TWV and

snowfall rate. The snowfall rate throughout this study is

the water equivalent.

2) POD UNDER DIFFERENT TWVAND SNOWFALL

INTENSITY SCENARIOS

We next explore why adding the V183 6 3 channel to

the low-frequency-channel set improves the POD most.

The PODs from the low-frequency channel set (V10,

H10, . . . , and H37), low-frequency-channel set plus V166

(V10, H10, . . . , H37, and V166), low-frequency-channel

set plus V183 6 3 (V10, H10, . . . , H37, and V183 6 3),

and low-frequency-channel set plus V183 6 7 (V10,

H10, . . . , H37, and V183 6 7) are calculated under

different TWV and snowfall rate situations (Fig. 7).

FIG. 5. Geospatial distribution of the snowfall occurrence frequency fromDecember 2014 to

February 2015 derived from (a) KaPR and (b) the all-low-frequency-channel combination

(V10, H10, V19, H19, V24, V37, and H37).

FIG. 6. POD derived from the all-low-frequency-channel com-

bination (V10, H10, V19, H19, V24, V37, and H37) (denoted by

letter L in the x-axis label) and the all-low-frequency-channel

combination plus one single high frequency (V89, H89, V166,

H166, V183 6 3, and V183 6 7).
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Both TWV and snowfall rate are divided into four

categories with boundaries corresponding to the

25%, 50%, and 75% values of each variable. The

snowfall rate is derived from KaPR reflectivity

observations.

Adding the V166, V1836 3, and V1836 7 channels

to the low-frequency-channel set improves the

POD, regardless of the snowfall intensity and water

vapor environment (Fig. 7). To quantify this improve-

ment, the POD values from the low-frequency-channel

set are differenced with those from the low-frequency-

channel set plus V166, V1836 3, and V1836 7 (Fig. 8).

Adding these channels to the low-frequency-channel set

clearly increases the PODs, as indicated by the positive

differences in Figs. 8a–c. However, the degree of im-

provement varies considerably under different condi-

tions. For example, adding the V183 6 3 channel to the

low-frequency-channel set improves the POD more

than adding the V166 channel, except when the TWV is

around 8.6 gm22 (cf. Figs. 8a,b). With TWV less than

5.0 gm22, greater POD improvement is observed by

adding the V183 6 3 channel than adding the V183 6 7

channel (cf. Figs. 8a,c). The vast majority (96.9%) of the

total pixels are in the categories with TWV less than

5.0 gm22 (Fig. 8d). Mathematically, this explains why

adding the V1836 3 channel produces the largest overall

POD improvement when using all pixels to calculate

POD.

We have also analyzed the POD difference between

low-frequency channels and low-frequency channels

plus 89GHz (not shown). It appears that by adding

89GHz the POD changes very little, except that the

POD increases about 0.10 and 0.13 under moist winter

environments (TWV at about 8.6 gm22) and heavy

snowfall (0.30 and 0.80mmh21), respectively. The rel-

atively large scattering signature leads to the POD

FIG. 7. Under different water vapor and snowfall intensity scenarios, (a) POD derived from the all-low-frequency-

channel combination (V10, H10, V19, H19, V24, V37, and H37), (b) POD derived from the all-low-frequency-channel

combination plus the V166 channel, (c) PODderived from the all-low-frequency-channel combination plus the V1836
3 channel, and (d) POD derived from the all-low-frequency-channel combination plus the V183 6 7 channel.
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improvement under these two scenarios (detailed ex-

planation in the following section). In these two cate-

gories, the sample size (196 1 121 5 317 pixels) only

accounts for about 0.1% of total sample. This explains

why adding 89GHz does not improve the PODwhen all

of the data are used to perform the analysis (Fig. 6).

The aforementioned phenomenon (i.e., greater im-

provement by adding the V183 6 3 channel to the low-

frequency-channel set in relatively dry environments

relative to adding the V166 and V183 6 7 channels),

suggests that the water vapor plays an important role in

the snowfall detection process. We suggest that weak

snowfall-scattering signatures are better captured by the

V1836 3 channel because that channel is least sensitive

to the surface (among the available channels on GMI)

because of the water vapor mask effect. The next section

describes a radiative transfer model simulation used to

test this hypothesis.

3) RADIATIVE TRANSFER MODEL SIMULATION

A radiative transfer model (Liu 1998) has been used

for several experiments to investigate the surface con-

tamination, water vapor mask effect, and snowfall-

scattering signals. This model calculates the TBs at

different microwave frequencies through the discrete

ordinate method at varying stream numbers. In the

FIG. 8. Under different water vapor and snowfall intensity scenarios, (a) POD difference between the all-low-

frequency-channel combination plus the V166 channel (Fig. 7b) and the all-low-frequency-channel combination

(Fig. 7a), (b) POD difference between the all-low-frequency-channel combination plus the V183 6 3 channel

(Fig. 7c) and the all-low-frequency-channel combination (Fig. 7a), and (c) POD difference between the all-low-

frequency-channel combination plus the V183 6 7 channel (Fig. 7d) and the all-low-frequency-channel combi-

nation (Fig. 7a). (d) Number of pixels in each category.
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current simulation, the stream number is set as 4. The

water vapor absorptions from both line and continuum

contributions are considered in this model. In addition,

the sector-like shape (Liu 2008a) is used in the simula-

tion. We have also tested six-bullet rosette and dendrite

snowflake shape. The numerical values of the simulation

change, but the main conclusions drawn from these

simulations hold.

The TBs at V166, V183 6 3, and V183 6 7 are

simulated, corresponding to the same surface snowfall

rate (0.05, 0.15, 0.30, and 0.80mmh21), but with surface

emissivity increasing from 0.5 to 1.0 and TWV in-

creasing from 1.5 to 8.6 gm22. This provides insight into

the channel sensitivity to the water vapor mask effect,

surface emissivity variation, and hydrometeor scattering

effect. For the simulation, the surface temperature and

temperature profile are obtained from MERRA data.

The hydrometeor profile is from the KaPR observations.

Above (below) the freezing level height, the hydrome-

teors are assumed to be in a solid (liquid) phase. Nomixed

phase hydrometeors are considered in the simulation.

Figures 9 and 10 only show simulated results for snowfall

rates at 0.05 and 0.8mmh21. For snowfall rates at 0.15 and

0.30mmh21, the simulated results are in between the

results for snowfall rates at 0.05 and 0.80mmh21.

Figure 9 shows that the surface emissivity variation

strongly affects the TB at V166 when the environment is

dry (TWV about 1.5 gm22) and the scattering signature

is small (snowfall rate about 0.05mmh21). Specifically,

the TB at V166 increases by 34.0K when surface emis-

sivity increases from 0.5 to 1.0 (i.e., from 216.7 to

250.7K; blue curve in Fig. 9a). With the same surface

emissivity increase, the TB at V1836 7 also increases by

;4.7K (green curve in Fig. 9a), whereas the V183 6 3

TB remains almost constant (red curve in Fig. 9a).

Thus, in dry winter environments with weak scattering

signatures, adding the V183 6 3 channel to the low-

frequency-channel set increases the POD by 0.09

(bottom-left-corner value in Fig. 8b). Conversely,

adding the V1836 7 and V166 channels only increases

the POD by 0.02 (bottom-left-corner value in Fig. 8c)

and 0.003 (bottom-left-corner value in Fig. 8a),

respectively.

The surface influence on the V166 TB is largely re-

duced (assuming the same surface snowfall rates) in

moist winter environments. Specifically, Fig. 9d shows

FIG. 9. Under different surface emissivities, simulated TBs at V166, V183 6 3, and V183 6 7, corresponding to

0.05mmh21 snowfall rate (SR) and TWV at (a) 1.5, (b) 3.0, (c) 5.0, and (d) 8.6 gm22. The correspondence between

line color and TB channel is shown in (d).
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that the V166 TB only increases by 13.4 K (from

244.4 to 257.7 K; blue curve in Fig. 9d) in the moist

winter environment, versus 34.0K in the dry environ-

ment (blue curve Fig. 9a). Thus, the large amount of

water vapor even makes the V166 channel less sensitive

to the surface. In turn, this channel behaves like a low-

level water vapor channel, as was noted by Bennartz and

Bauer (2003) and Laviola and Levizzani (2011). In this

scenario, the water vapor in the winter environment

largely mitigates the surface influence for the V166

channel. Consequently, the POD increases by 0.24

(upper-left-corner value in Fig. 8a). This POD im-

provement is similar to adding the V183 6 3 channel to

the low-frequency-channel set (POD increases by 0.23;

upper-left-corner value in Fig. 8b). Alternatively, in the

moist winter environment, the surface emissivity varia-

tion has almost no influence on the TB at 183 6 7GHz

(green curve in Fig. 9d). The scattering signature is also

smaller at V183 6 3 than at V183 6 7 because of the

water vapor mask effect (discussed next). Therefore,

adding the V183 6 7 channel provides much more im-

provement to the POD (0.42; upper-left-corner value in

Fig. 8c) than adding the V1836 3 channel (0.23; upper-

left-corner value in Fig. 8b). While the water vapor can

mask or alleviate the surface contamination, it also re-

duces the scattering signature. For example, for a TWV

of 1.5 gm22 and a surface emissivity of 0.5, the 183 6
7GHz TB decreases by about 51.4K from 243.3 to

191.9K (cf. Fig. 9a and Fig. 10a), along with the snowfall

rate increasing from 0.05 to 0.8mmh21. In contrast, at

the 183 6 3GHz TB decreases by 36.3K from 244.7 to

208.4K. Bennartz and Bauer (2003) reported a similar

finding.

When the winter environment is moist (TWV about

8.6 gm22) and the scattering signature is large (i.e.,

snowfall rate of about 0.8mmh21), even the V166 TB

does not vary much with the surface emissivity varia-

tion. In fact, the TB at V166 only increases by about

4.7K from 197.9 to 202.6K when surface emissivity in-

creases from 0.5 to 1.0 (blue curve in Fig. 10d). In this

case, adding the V166 channel to the low-frequency-

channel set increases the POD by 0.50 (upper-right-

corner value in Fig. 8a), versus an increase of only 0.36

that results from adding the V183 6 3 channel (upper-

right-corner value in Fig. 8b).

In short, there are two competing factors for snowfall

detection over land. Surface contamination is the first,

and the second is the scattering signatures from the

suspended ice particles. Because of the relatively weak

scattering signature from snowfall (compared with that

from rainfall), the surface contamination can signifi-

cantly affect the snowfall detection performance from

FIG. 10. As in Fig. 9, but for a 0.08mmh21 SR.
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the passive microwave radiometers. Fortunately, the

water vapor can effectively mask out, or at least allevi-

ate, the surface contamination for the water vapor band

channels (V183 6 3 and V183 6 7), depending on the

amount of water vapor in the air. This water vapor mask

effect largely accounts for the greater snowfall detection

improvement by adding the V183 6 3 channel to the

low-frequency-channel set.

In themodel simulation, we did not consider the effect

of supercooled liquid water. As mentioned in the in-

troduction, previous work (Kulie et al. 2010; Löhnert
et al. 2011; Xie et al. 2012; Liu and Seo 2013; Wang et al.

2013) has shown that the liquid water can further com-

plicate the snowfall detection by increasing the TB at the

high-frequency channels. Therefore, the columnar cloud

liquid water could reduce or mute the scattering effects

observed in the modeling exercise if the liquid water is

taken into consideration.

4) SNOWFALL DETECTION PERFORMANCE FROM

THE WATER VAPOR CHANNELS

Of all the high-frequency channels, the POD im-

proves the most by adding the V183 6 3 channel to the

low-frequency-channel set. However, using the water

vapor channels (V1836 3 and V1836 7) alone does not

provide the best snowfall detection. Table 3 shows the

PODs derived from only the water vapor channels

(V183 6 3 and V183 6 7), from the high-frequency

window channels (V89, H89, V166, and H166), and

from all high-frequency channels (both water vapor

and window channels). As expected, the POD is very

small (0.13) when using only the water vapor channels.

Alternatively, the POD is 0.66 when using only the

high-frequency window channels. Combining these

two sets of channels improves the POD to 0.74. This

suggests that the scattering signature from the high-

frequency window channels is essential for snowfall

detection and that the water vapor mask effect

is required to achieve optimal snowfall detection

performance.

To further demonstrate the snowfall detection capa-

bility of the water vapor channels alone, Fig. 11 shows

the snowfall detection performance for the three

snowfall cases discussed in section 4a. The water vapor

channels almost completely missed the snowfall event

over the Great Lakes region, as indicated by the ground

observations (magenta crosses in Fig. 11a), KuPR

(green dots in Fig. 11b), and KaPR (red dots in Fig. 11c).

These channels alone also falsely identified snowfall

between 358 and 408N, where ground stations, KuPR,

and KaPR reported no snowfall. For the snow event in

China, the water vapor channels missed most of the

snowfall pixels indicated by the other sensors and falsely

identified snowfall pixels around Beijing. For the

snowfall case over Siberia, Russia, the water vapor

channels capturedmost of the snowfall pixels, but falsely

identified snowfall pixels south of 508N.

The snowfall occurrence frequency is also calculated

for each 18 grid box using only the water vapor channels

(Fig. 17d, described in greater detail below) and the

KaPR observations (Fig. 17a, described in greater detail

below). Using only the water vapor band channels mis-

ses many snowfall events over North America and East

Asia and falsely identifies snowfall over Siberia, Russia

(e.g., near 608N, 1208E). It is worth mentioning that the

geospatial distribution of the snowfall occurrence fre-

quency from the water vapor channels alone is shown in

Fig. 17 (described in greater detail below), instead of in the

immediately following figure, because we would like to

demonstrate snowfall detection performance difference

from six types of radiometers in the GPM constellation.

In summary, when TWV is relatively small, the greatest

snowfall detection improvement results from adding the

V1836 3 channel to the low-frequency-channel set (V10,

H10, V19, H19, V24, V37, and H37) (vs adding the V166

and V183 6 7 channels). For environments with more

water vapor, the greatest snowfall detection improvement

results from adding the V183 6 7 channel. In very moist

winter environments (TWV around 8.6gm22) adding the

V166 channel improves the snowfall detection perfor-

mance even more than by adding the V183 6 3 channel.

This observation is explained by the competing effects of

surface contamination and the snowfall-scattering signa-

ture. In relatively dry environments, there is only enough

water vapor to mask the surface effect for the V183 6 3

channel. More water vapor can effectively mask the in-

fluence of the surface for the V183 6 7 channels. In very

moist winter environments, the large amount of water

vapor makes the V166 channel almost blind to the sur-

face, so this channel better captures the scattering signa-

ture from snowfall. The radiative transfer model simulation

supports this explanation.

Both case studies and the snowfall occurrence fre-

quency geospatial distribution demonstrated that the

water vapor channels alone contain very little snowfall

detection information. In contrast, the high-frequency

TABLE 3. POD derived from water vapor band channels

(V183 6 3 and V183 6 7), high-frequency window channels (V89,

H89, V166, and H166), and high-frequency channels (i.e., water

vapor band channels plus high-frequency window channels).

Channel availability POD

High-frequency water vapor channels 0.13

High-frequency window channels 0.66

High-frequency channels (water vapor 1 window) 0.74
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window channels (89 and 166GHz) have much larger

snowfall detection capability, which implies that the scat-

tering signal, not the water vapor mask effect, is essential

for snowfall detection. Combining the 183-GHz water

vapor channels with the high-frequency window channels

(89 and 166GHz) captures the snowfall-scattering signal

while accounting for the water vapor mask effect.

5. Snowfall detection performance from all
possible channel combinations

We next examine the PODs for all possible channel

combinations.There are 8191possible channel combinations

from the 13GMI channels (C1
13 1C 2

13 1 . . . 1C13
13 5 8191).

These combinations are labeled as ‘‘channel combination

index’’ in Fig. 12. PODs from several typical channel

combinations are also labeled in Fig. 12a. The PODs vary

greatly from 0.02 to 0.77. The PODs less than 0.35 are

mostly from the low-frequency-channel combinations

(V10, H10, V19, H19, V24, V37, H37, V89, and H89) or

water vapor channels. No single channels have PODs

greater than 0.22, regardless of the frequency.

Channel availability is analyzed for channel combi-

nations with POD greater than 0.70 (horizontal red

dashed line in Fig. 12a). There are 805 channel combi-

nations with POD greater than 0.70, and Fig. 12b illus-

trates their channel availability. As expected, the

V166 and H166 channels appear in all 805 channel

combinations. The V89 and H89 channels are the

second most common (;75%). This again shows that

the scattering signature in the 166 and 89 channels is

indispensable for snowfall detection. Without these four

channels, the largest possible POD is 0.52. This result is

consistent with a sensitivity study by Mejia et al. (2008).

They showed that the snowfall detection performance of

AMSU-B is noticeably worse without 89GHz and 150

channels.

6. Snow detection capability of the GPM
constellation radiometers

a. GPM constellation radiometers

At the launch of the GPM core satellite, the GPM

radiometer constellation includes 13 passive microwave

FIG. 11. As in Fig. 4, but for snowfall occurrence frequency in (a), (d), and (h) derived from water vapor channels (type-6 radiometer).
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radiometers (Hou et al. 2014; Kummerow et al. 2015).

Table 1 provides attributes for the WindSat, Advance

Microwave Sounding Unit-A (AMSU-A), Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E), Advanced Microwave Scanning

Radiometer-2 (AMSR2), TRMM Microwave Imager

(TMI), Special Sensor Microwave Imager (SSM/I),

AMSU-B, MHS, Microwave Analysis and Detection

of Rain and Atmospheric Systems (MADRAS),

SSMIS, GMI, ATMS and Sondeur Atmosphérique du

Profil d’Humidité Intertropicale par Radiométrie
(SAPHIR).

These 13 radiometers can be grouped into six cate-

gories based on the channel availability: 1) low-frequency

channels only (WindSat); 2) low-frequency channels

plus the 89-GHz channel (TMI, AMSR-E, AMSR2,

AMSU-A, and SSMI); 3) high-frequency channels only

(AMSU-B and MHS); 4) all channels (SSMIS, GMI,

and ATMS); 5) all channels except 183-GHz channels

(MADRAS); and 6) 183GHz water vapor band chan-

nels (SAPHIR). Although MADRAS and SAPHIR

only cover the tropics, where snowfall occurrence only

exists over somemountainous regions, these two types of

radiometers are retained as comparison references for

the other sensors. For convenience, these six types of

radiometers are referred to as type-1 radiometer (low-

frequency channels), type-2 radiometer (low-frequency

channels 1 89GHz), type-3 radiometer (high-

frequency channels), type-4 radiometer (all channels),

type-5 radiometer (all channels except 183-GHz chan-

nels), and type-6 radiometer (183-GHz channels).

Several aspects differ among these radiometers. For

example, the footprint size varies greatly despite their

similar frequencies. Also, some sensors employ a conical

scanning scheme (e.g., SSMIS, TMI, and GMI), while

others use a cross-track scanning scheme (e.g., ATMS,

MHS, and SAPHIR). Ideally, one would collocate these

13 radiometers to a common snowfall observation ref-

erence to judge their snowfall detection capability. For

example, over the continental United States, the ground

radar observations can serve as the common reference.

However, there is no such a reference on the global

scale. Therefore, in this study, subsets of GMI channels

are used to estimate the snowfall detection capability for

these six types of radiometers with common frequencies.

The authors would like to emphasize that the essential

idea here is not to obtain the exact POD value of each

radiometer. Instead, the idea is to rank these six types

of radiometers, which serve as ‘‘prototype’’ sensor

types for future sensors that could be added to the

constellation.

The GMI frequencies range from 10 to 183 6 7GHz,

which are commonly available from the other 12 radi-

ometers. Table 1 lists the frequency and polarization for

each radiometer. The channels around 6.9 and 50.3GHz

are unavailable from GMI. Since the low-frequency

channels contain very limited snowfall detection in-

formation (because of the surface contamination, re-

duced sensitivity to the scattering signature, and the

larger FOV at low-frequency channels), omitting these

channels likely does not significantly affect the statistics

shown below.

At similar frequencies, for almost all channels the

GMI has the finest pixel resolution of the 13 radiom-

eters. Occasionally, the FOV on a certain radiometer

at a specific frequency is slightly finer than that from

GMI. For example, the FOV at the V37 channel on

WindSat is 10 versus 12 km on GMI (Gaiser et al. 2004;

Draper et al. 2015). In addition, the other 12 radiom-

eters also are calibrated against the GMI (Biswas et al.

2013). Thus, it is likely that the snow detection skills

for the other 12 radiometers estimated by subsets of

FIG. 12. (a) Ranked POD values from 8191 (all possible) GMI

channel combinations. (b) Channel availability in each of the 805

combinations with POD larger than 0.70.
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GMI channels represent their upper-bound detection

capability.

b. PODs of the GPM constellation radiometers

Table 4 lists the POD values from the six types of

radiometers. The type-6 radiometer (183-GHz water

vapor channels) has the poorest snowfall detection

performance (POD at 0.13). This finding again suggests

that the high-frequency window channels (89 and

166GHz) are necessary to effectively capture the scat-

tering signature and improve snowfall detection. The

POD is 0.33 for the type-1 radiometer (low-frequency

channels). For the type-2 radiometer (low-frequency

channels 1 89GHz), the POD improves to 0.42. How-

ever, adding either V89 or H89 alone does not improve

the POD (Fig. 6). The addition of both channels to the

low-frequency-channel set is what increases the POD to

0.42. Previous studies have also noted the relatively poor

detection performance from the V10–V89 channels (Liu

and Curry 1997; Skofronick-Jackson et al. 2013).

Both the type-5 radiometer (all channels except 183

channels) and type-3 radiometer (high-frequency chan-

nels) possess much better snowfall detection capability

than the type-1 radiometer (low-frequency channel

only) and type-2 radiometer (low-frequency channels 1
89GHz), with PODs of 0.72 and 0.74, respectively. The

snowfall detection improvement demonstrates the much

stronger response from the high-frequency channels.

TABLE 4. POD values for the six types of GPM constellation

radiometer (Table 1).

Radiometer

type POD

Typical

radiometer Channel availability

1 0.33 WindSat Low-frequency channels

2 0.43 TMI Low-frequency

channels 1 89GHz

3 0.74 MHS High-frequency

channels

4 0.77 GMI All channels

5 0.72 MADRAS All channels except

183-GHz channels

6 0.13 SAPHIR 183-GHz channels

FIG. 13. As in Fig. 4, but for snowfall occurrence in (a), (d), and (h) derived from the type-2 radiometer (low-frequency channels 1
89GHz).
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For the type-5 radiometer (all channels except 183

channels), the scattering signature from the high-

frequency channels contributes much of the snowfall

detection skill. As shown previously, for the type-3

radiometer (high-frequency channels), both the scat-

tering effect (mainly from the window channels; e.g.,

V166) and water vapor mask effect (183 vapor bands)

contribute to the better snowfall detection. The type-4

radiometer (all channels; e.g., GMI, ATMS, and

SSMIS) provide the best snowfall detection (POD of

0.77).

Additionally, the POD from the type-3 radiometer

(high-frequency channels) is only slightly larger than

that from the type-4 radiometer (all channels), which

indicates that the low-frequency channels are of less

importance. Further, the POD from the type-4 radi-

ometer (all channels) is only 0.05 larger than that from

the type-5 radiometer (all channels except 183 chan-

nels). This supports our earlier finding that the scatter-

ing signature from the high-frequency window channels

is more important for snowfall detection than the water

vapor signature from the 183-GHz channels.

c. Case studies and geospatial distribution of the
snowfall occurrence frequency

We next revisit the three snowfall cases in the Great

Lakes; eastern China; and Siberia, Russia, to demon-

strate the snowfall detection performances by these six

types of radiometers (Figs. 4, 11, 13–16). The type-1

radiometer (low-frequency channels; Fig. 4), type-6 ra-

diometer (183-GHz channels; Fig. 11), and type-2 radi-

ometer (low-frequency channels 1 89GHz; Fig. 13)

perform poorest for these cases. The greatest limitation

of these sensors is the large number of false snowfall

detections. Alternatively, the type-4 radiometers (all

channels; Fig. 14), the radiometer, KuPR, KaPR, and

ground observations agree very well during these cases.

For example, the radiometer clearly captures the

snowfall event over the Great Lakes on 6 January 2015

(blue dots in Fig. 14a), which was also observed by the

ground stations (magenta cross in Figs. 14a–c), KuPR

(green dots in Fig. 14b), and KaPR (red dots in Fig. 14c).

More importantly, it almost completely eliminates the

false identification of the snowfall that was evident in

FIG. 14. As in Fig. 4, but for snowfall occurrence in (a), (d), and (h) derived from the type-4 radiometer (all channels).
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Figs. 4a, 4d, and 4g and Figs. 11a, 11d, and 11g. For

the type-3 radiometer (all high-frequency channels;

Fig. 15) and type-5 (all channels except 183-GHz chan-

nels; Fig. 16), the snowfall detection skills are very

similar to those from the type-4 radiometers (all chan-

nels). An exception is that the type-5 radiometer (all

channels except 183-GHz channels; Fig. 16) contains

more falsely identified snowfall pixels in the lower

portion of the swath in the Great Lakes (cf. Fig. 14a and

Fig. 16a). These falsely identified snowfall pixels are

very likely caused by the surface contamination. This

further demonstrates that the high-frequency water va-

por channels (183GHz) are necessary to achieve the

optimal snowfall detection.

Spatial snowfall occurrence frequencies are calcu-

lated for the six types of radiometers (Figs. 5 and 17).

The occurrence frequency derived from the type-4

radiometer (all channels; Fig. 17b) agrees best with

that from the KaPR observations (Fig. 17a). Similar

patterns from the type-3 and type-5 radiometers are

noticed (not shown). However, the spatial occurrence

frequency from the type-1 radiometers (low-frequency

channels; Fig. 5b) and the type-2 radiometers (low-

frequency channels 1 89GHz; Fig. 17c) are the op-

posite of the KaPR observations. Specifically, the

snowfall occurrence frequencies from these two types

of sensors are smaller in the high-latitude regions

(north of 458N), and larger in the low-latitude regions.

For example, both the type-1 and type-2 radiometers

greatly underestimate the snowfall occurrence fre-

quency in Alaska, northeastern Canada, the western

portion of Russia, and the Kamchatka Peninsula,

while snowfall frequency overestimates are evident

from the Black Sea to the Caspian Sea. As noted

previously, using only the 183-GHz water vapor

band channels (Fig. 17d) misses many snowfall pixels in

North America and falsely identifies snowfall in Siberia,

Russia.

To summarize, it is found that the type-4 radiometers

(all channels; SSMIS, GMI, andATMS) possess the best

snowfall detection capability, followed by type-3 radi-

ometers (high-frequency channels) and type-5 radiom-

eters (all channels except 183-GHz channels). The type-1

radiometer (low-frequency channels), type-2 radiometer

FIG. 15. As in Fig. 4, but for snowfall occurrence in (a), (d), and (h) derived from the type-3 radiometer (high-frequency channels).
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(low-frequency channels1 89GHz), and type-6 radiometer

(183-GHz channels only) performed the poorest.

7. Conclusions and discussion

This study quantified the microwave channels’ snow-

fall detection capability from an observational per-

spective by using data from GPM’s DPR and GMI. To

judge the snowfall detection performance for different

channels or channel combinations, the POD is taken as

the metric, corresponding to the same FAR at 0.1.

We first evaluated the snowfall detection skill from

the low-frequency channel or channel combinations.

Results showed that the low-frequency channels (V10,

H10, V19, H19, V24, V37, and H37) contain limited

snowfall detection information (POD at 0.34), which

frequently miss the snowfall occurrence while falsely

identifying snowfall, compared with observations from

ground station, KuPR, and KaPR.

To demonstrate the importance of the high-frequency

channels, the high-frequency channels (V89, H89, V166,

H166, V183 6 3, and V183 6 7) are added to the low-

frequency-channel set (V10, H10, V19, H19, V24, V37,

and H37) one by one. It was found that adding the

V183 6 3 channel provided the greatest improvement,

by which POD increases from 0.34 to 0.50. This result

differs from previous theoretical studies, which showed

that the strongest scattering signature is from the high-

frequency window channel (e.g., V166). We suggested

that the weak snowfall-scattering signal is better cap-

tured by the V183 6 3 channel, because the V183 6 3

channel is the least sensitive channel (among the avail-

able channels on GMI) to the surface due to the water

vapor mask effect. The statistical analysis under differ-

ent water vapor and snowfall intensity scenarios and the

radiative transfer model simulations support this

explanation.

Adding the V183 6 3 channel to the low-frequency-

channel set provides the larger POD improvements,

compared with adding V166 and V183 6 7 chan-

nels. However, this does not imply that the water vapor

effect is the key element for snowfall detection. In fact,

FIG. 16. As in Fig. 4, but for snowfall occurrence in (a), (d), and (h) derived from the type-5 radiometer (all channels except 183 channels).
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FIG. 17. (a) Geospatial distribution of snowfall occurrence frequency derived from KaPR.

(b) Geospatial distribution of snowfall occurrence frequency derived from the type-4 radi-

ometer (all channels). The patterns derived from the type-3 radiometers (high-frequency

channels) and type-5 radiometers (all channels except 183-GHz channels) are almost identical

to those from the type-4 radiometers (all channels). (c) As in (b), but for the type-2 radiometer

(low-frequency channels 1 89GHz). (d) As in (b), but for the type-6 radiometer (183-GHz

channels). See Table 1 for more details regarding the definition of the radiometer type.
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only employing the 183GHz water vapor band channels

(V1836 3 and V1836 7), the snowfall detection skill is

very low with POD at 0.13. On the other hand, using the

high-frequency window channels (V89, H89, V166, and

H166), the POD is 0.66. These results suggest that water

vapor masks/alleviates the surface contamination, while

scattering signature is essential for snowfall detection.

The PODs from all 8191 possible channel combinations

are calculated. It is noticed that V166 and H166 appear in

any channel combination with a POD greater than 0.7.

Channels V89 and H89 appear in the majority of these

combinations. These results further demonstrate that the

scattering signature is thekey element for snowfall detection.

The GPM constellation radiometers are grouped into

six types (Table 1), based on the channel availability.

Subsets of GMI channels are used to estimate the snow-

fall detection capability of each type. The type-4 radiom-

eter (all channels) performs the best for snowfall detection,

followedby the type-3 radiometer (high-frequency channels)

and the type-5 radiometer (all channels except 183-GHz

channels). The type-1 radiometer (low-frequency channels),

type-2 radiometer (low-frequency channels 1 89GHz),

and type-6 radiometer (183-GHz channels only) show

limited snowfall detection capability.

The improved snowfall detection performance from

the type-4 radiometer (all channels) is further demon-

strated by snowfall case studies and the snowfall oc-

currence frequency geospatial distribution. The snowfall

identification from the type-4 radiometer agrees well

with that from ground station, KuPR, and KaPR ob-

servations. More importantly, the prevalent false iden-

tification by the type-1, type-2, and type-6 radiometers

is almost completely eliminated. The type-3 (high-

frequency channels) and type-5 (all channels except

183-GHz channels) radiometers perform similarly to

the type-4 radiometers (all channels).

In this study, the KaPR snowfall detection is taken as

the reference (truth). With a minimum detection of

;12dBZ, KaPR will miss most of the light snowfall.

Studies have shown that CloudSat is the most reliable

space-based snowfall detection instrument currently

available (Liu 2008b; Kulie et al. 2016), with a minimum

detection reflectivity at ;228 dBZ. However, the col-

located sample size between GMI and CloudSat is lim-

ited. Future work will seek to extend this work over both

land and ocean by combining KaPR and CloudSat

snowfall observations.

This work can be easily adapted to evaluate the GMIs

snowfall detection capability over the ocean in the fu-

ture. In addition, this study indicates that for the up-

coming microwave sensor design, the high-frequency

window channels (e.g., 166GHz) are indispensable for

snowfall detection over land. The 183GHz water vapor

channels are necessary to obtain the optimal snowfall

detection performance, and the low-frequency channels

are of less importance.
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